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 Abstract 
Background: Diabetic retinopathy (DR is the most common microvascular complication of diabetes 

that can cause vision problems and blindness that poses a significant health risk and financial 

burden, increasing the needs to effectively screen and manage diabetic eye disease. The current 

method of screening for diabetic eye disease relies on human experts to analyze the results. 

Alternatively, recent advancements in artificial intelligence (AI) especially deep learning (DL) and 

retinal imaging using smartphones offer a promising solution for both patients and 

ophthalmologists, potentially improving patient compliance and making telemedicine more efficient 

for DR screening.  

Purpose : To represent on accuracy of AI‑integrated process in smartphone-based DR screening and 

to compare the various study methods and settings used to achieve this accuracy.   

Method: Literature search on current DR screening programs was conducted following the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyzes (PRISMA) framework on Google Scholar, 

Scopus, Web of Science, PubMed, Medline, and Embase with most recent search was updated on 

June 1st, 2024. Key information was extracted from the studies included author names, journal, year 

of publication, country, sensitivity, specificity, positive and negative predictive values (if available), 

study methods, and settings. 

Result: The study identification process resulting in 9 selected studies. The performance metrics 

reported included intergrader/intramodality agreement, sensitivity, specificity, positive predictive 

value (PPV), and negative predictive value (NPV). The sensitivity of AI in detecting DR ranged from 

77-100%, while specificity ranged from 61.4 - 95.5%. PPV and NPV were reported less frequently, 

with ranges of 48.1 - 92.92% and 91.3 - 99.46%, respectively. Intergrader agreement was within 

range ĸ= 0.45 – 0.91.  

Conclusion: The studies reviewed in this paper collectively represents the potential of smartphone 

based integrated with AI in revolutionizing DR screening. The high sensitivity and specificity achieved 

by various AI algorithms, often exceeding the standards set by regulatory bodies like the FDA and 

ETDRS, highlight their accuracy in detecting DR and its severity levels. The accessibility and user-

friendliness of smartphone-based retinal imaging further enhance the coverage of DR screening, 

particularly in underserved areas with limited resources and internet connectivity.  
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INTRODUCTION 

Diabetic eye disease, a 

common issue for people 

with Type 1 or Type 2 

diabetes, is a major reason 

for vision loss in working-age 

adults. In 2017, an estimated 425 million adults 

worldwide had diabetes, double the number in 1980, 

and this figure is expected to reach 629 million by 

2045. Diabetic retinopathy (DR) roughly affected 

30% to 45% people with diabetes and is the most 

common microvascular complication where 10% of 

these cases are vision-threatening, meaning they 

could significantly impair vision, even blindness.1  

The increasing prevalence of diabetic eye disease 

is a worldwide problem that poses a significant 

health risk and financial burden for both individuals 

and societies, particularly in developing countries 

where it is becoming more common.2 This surge in 

diabetes cases puts increasing pressure on 

healthcare providers to effectively screen and 

manage diabetic eye disease.3 A fully implemented 

national diabetic eye screening program (DESP) by 

UK successfully screened a vast majority of diabetic 

patients resulting in decrease of DR as the primary 

cause of blindness in working-age adults in the UK, 

highlighting the effectiveness of such programs in 

preventing and treating DR-related vision loss.4,5    

Despite the importance of DR screening, 

compliance with recommended guidelines is low 

because of a lack of understanding about the disease 

and its potential complications,6  difficulty accessing 

medical resources and inadequate insurance 

coverage for these exams.7 One study from 

Indonesia reflects that despite being knowledgeable 

and having a positive attitude towards DR screening, 

general practitioners (GP)s did not consistently 

implement it in practice because of limited 

experience, lack of confidence in diagnosing fundus 

abnormalities, and lack of equipment in primary 

care.8 

Telemedicine offers a way to make fundus 

screening more accessible by allowing patients to be 

screened at convenient times and locations, 

eliminating the need to travel to far-off hospitals for 

an eye examination with an ophthalmologist. While 

telemedicine makes DR screening more accessible, it 

still requires human experts to analyze the images.9 

However, recent progress in deep learning (DL)-

based artificial intelligence (AI) presents a potential 

solution that benefits both patients and 

ophthalmologists, as a way of detecting retinal 

images which may be sight‑threatening,10 potentially 

improving patient compliance and making 

telemedicine more efficient for DR screening.9  

DL in AI software can automatically analyze the 

retinal images and provide recommendations for 

follow-up care or referrals, reducing the workload of 

ophthalmologists. This increased convenience and 

efficiency can significantly improve patient 

participation in DR screenings and detections.1,9 

While some research has shown that AI can 

accurately screen for diabetic retinopathy in 

developed country like UK,3,11 it often relies on 

expensive, desktop-based fundus cameras that may 

not be accessible in rural areas.12 

Retinal imaging using smartphones has proven to 

be an effective and affordable method for diabetic 

retinopathy screening.13,14  Similarly, using AI to 

analyze images from inexpensive smartphone 

devices has also been shown to be valid for screening 

in community settings.15 This study aims to represent 

on accuracy of AI‑integrated process in smartphone-

based DR screening and to compare the various 

study methods and settings used to achieve this 

accuracy 

METHOD  

The author evaluated the current state of 

smartphone-based DR screening programs by 

searching Google scholar and PubMed via Medline 

for open-access studies published in English using 
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these keywords: “diabetic retinopathy, artificial 

intelligence, DR screening, smartphone”. In addition, 

we sought reference lists and publicly accessible 

websites for information on established, 

commercially available diabetic retinopathy (DR) 

screening algorithms. 

A comprehensive study was done to compare the 

accuracy and methods on the pre-existing research 

on smartphone-based, AI-integrated of diabetic 

retinopathy screening. The PRISMA (Preferred 

Reporting Items for Systematic Reviews and Meta-

Analyzes) framework guided the review process by 

establishing a set of predefined criteria and 

guidelines. The PRISMA diagram (Figure 1) outlines 

the search strategy used, including the criteria for 

including and excluding studies. The most recent 

search was conducted on June 1st, 2024. Key 

information extracted from the studies included 

author names, journal, year of publication, country, 

study type, sensitivity, specificity, positive and 

negative predictive values (if available), and study 

methods and settings. 

Eligibility criteria 

We sought to include studies that had outcome 

measures of accuracy for sensitivity and specificity 

(and predictive values, if available) for smartphone-

based, AI-integrated of diabetic retinopathy 

screening. Only studies in English were included. 

Studies which not stated the accuracy on DR 

screening are excluded. Researches on data set 

without the patient are excluded. Conference 

abstracts, review articles, letters to the editor, 

editorials, and correspondence notes were excluded. 

Risk of Bias 

We used the QUADAS-2 (Quality Assessment of 

Diagnostic Accuracy Studies) tool to assess the risk 

of bias and applicability of all included studies. Two 

reviewers (SMS and AKL) performed assessment of 

selected studies independently. Any disagreements 

between the review authors were resolved by 

discussion until a consensus was reached. 

Data Extraction and Analysis 

The data extraction process involved 

systematically gathering and combining relevant 

data from the selected studies. Data extraction 

included meticulously reviewing each study to 

identify information such as the study's methods, 

setting, sample size, the AI software or tools used, 

intergrader/intermodality agreement (kappa values) 

and the study's accuracy as indicated by sensitivity, 

specificity, and predictive values.  

In our analysis, we divided the results into two 

categories to assess the accuracy of AI-integrated, 

smartphone-based devices in diagnosing any level 

of DR and the more severe, referable DR (RDR) 

defined as moderate non-proliferative DR with 

diabetic macular edema (DME), severe NPDR, or 

worse, regardless of DME presence. This assessment 

was based on clinical grading using retinal images 

without any OCT examination.16 Sensitivity and 

specificity data from studies reporting detailed test 

outcomes such as true positive (TP), false positive 

(FP), true negative (TN), and false negative (FN) were 

visually summarized in a forest plot using RevMan 

5.4. Studies without this detailed information were 

excluded from the forest plot. This approach allowed 

for a clear and concise presentation of the accuracy 

of smartphone-based devices in diagnosing any DR 

and RDR. 

RESULTS 

The study identification process included 

searching databases, resulting in 24 records. These 

reports were screened for eligibility, leading to the 

inclusion of 9 studies in the review [Figure 1]. Twelve 

reports were excluded for reasons such as focusing 

on data sets rather than patients, not using 

smartphone, not stating sensitivity and/or specificity, 

and studies using smartphone but not integrated 

with AI. Ultimately, 9 studies were selected for
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detailed analysis and synthesis in the review. Forest 

plot contains the summary of sensitivity and 

specificity from five studies in detecting any DR 

[Figure 2] and five studies in detecting RDR [Figure 

3]. The study by Malerbi (2022), which categorized 

outcomes as "more than mild DR (mtmDR)," was 

incorporated into the RDR forest plot due to the 

equal definition of RDR.

 

Figure 1 Data selection steps using the Preferred Reporting Items for Systematic Review and Meta‑Analyzes. 
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Figure 2 Forest plot showing sensitivity and specificity range of AI software in detecting any severity of diabetic retinopathy (DR) from 
smartphone-based images 

 

 

Figure 3 Forest plot showing sensitivity and specificity range of AI software in detecting referable diabetic retinopathy (RDR) from smartphone-
based images 

Table 1 illustrates the risk of bias assessment of 

included studies using the QUADAS-2 tool. Most 

studies employed low risk of bias on reference 

standard except from Wroblewski, et al. 202317 

because this study did not state exact reference used 

to grade DR. Some studies were deemed high risk of 

bias in index test because the images used were 

labelled by a single grader. Risk of bias in patient 

selection from couple of studies were scored high 

because the study did not present demographic of 

the patient. Overall, the applicability concern of the 

studies is low.  

Table 2 summarized studies evaluating the 

performance of various smartphone-based, AI 

integrated screening process in detecting DR. The 

studies were arranged chronologically, starting with 

the research published in 2018 progressing towards 

more recent publications. The studies employed 

different DR classification systems, with the 

International Clinical Diabetic Retinopathy (ICDR) 

scale being the most common. Intergrader and 

intramodality agreement varied, suggesting 

inconsistencies in image interpretation.  

 

 

RDR 

Any DR 
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Table 1 Risk of Bias Assessment Using Quadas-2 Tools 

 

However, the accuracy results were promising, with sensitivity ranging from 83.3% to 98.84% and specificity 

from 61.4% to 95.5 PPV and NPV were also generally high, indicating the reliability of smartphone-based 

screening in identifying individuals with and without DR.  

Table 3 provides a summary of different study settings DR screening. data from nine studies conducted in 

India, the USA, Brazil, and Mexico, which explored the use of smartphone-based AI software for diabetic 

retinopathy screening. The studies used various AI software (Medios AI, EyeArt, PhelcomNet), smartphones 

(HTC One, iPhone 6), and image capture methods (with and without pupil dilation). The number of fundus 

images taken and the fields of view varied across the studies. Some studies specified the healthcare workers 

involved in the screening process (trained technicians, medical students, health workers), while others did not. 
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Table 2 Summary of selected study showing study samples and accuracy on DR screening. CI: Confidence Interval; DR: Diabetic Retinopathy; NPDR: Non-Proliferative Diabetic Retinopathy; ICDR: International 
Clinical Diabetic Retinopathy; STDR: Sight Threatening Diabetic Retinopathy; DME: Diabetic Macular Edema; RDR; Referable Diabetic Retinopathy; PDR: Proliferative Diabetic Retinopathy; ETDRS: Early Treatment 
Diabetic Retinopathy Study; DESP: Diabetic Eye Screening Programme; vtDR: Vision-threatening Diabetic Retinopathy; mtmDR: more than mild Diabetic Retinopathy 

Author Sample Size DR classification 
Intergrader 
Agreement 

Intramodality 
Agreement 

Accuracy results, 95% CI 

Sensitivity Specificity PPV NPV 

Sengupta, et 
al. 201814  

135 individuals 
233 eyes 

ICDR18, DESP19,20 any DR ĸ= 0.55 
VTDR ĸ= 0.76 

- 
Any DR 93.1 (88.3-96.4) 
 

Any DR 89.1% 89.1 (68.2-
92.2) 

- - 

Rajalakshmi, 
et al. 201821 

296 individuals 
2408 images 

ICDR,18 Referable 
DR (RDR) defined as 
moderate NPDR 
and above 
 

- 

any DR ĸ=0.78  
STDR ĸ= 0.75  
RDR ĸ= 0.67  

Any DR 95.8% (92.9-98.7) 
DME 97% (91.5-99.4) 
PDR 78.1% (63.8-83.3) 
STDR 99.1% (95.1-99.9) 
RDR 99.3% (96.1-99.9) 

Any DR 80.2% (72.6-87.8) 
DME 75.8% (69.7-81.8) 
PDR 89.8% (86.1-93.4) 
STDR 80.4% (73.9-85.9) 
RDR 68.8% (61.5-76.2) 

Any DR 89.7% 
DME 67.4% 
PDR 48.1% 
STDR 75.3% 
RDR 74.6% 

Any DR 
91.4% 
DME 98% 
PDR 97.1% 
STDR 99.3% 
RDR 99.1% 

Natarajan, et 
al. 201913 

231 individuals ICDR18  Any DR ĸ= 0.85 
- 

Any DR 85.2% (66.3-95.8) 
RDR 100% (78.2-100) 

Any DR 92% (91.1-95.4) 
RDR 88.4% (83.1-92.5) 

- - 

Sosale, et al. 
2020a22 

297 individuals ICDR, DME18 Any DR ĸ= 0.89 
DME ĸ= 0.9 - 

Any DR 86.78% (82.9–90.6) 
RDR 98.84% (97.6–100) 

Any DR 95.45% (93–97.8) 
RDR 86.73% (82.8–90.5) 

Any DR 92.9% 
RDR 75.2% 

Any DR 
91.3% 
RDR 99.4% 

Tyson, et al. 
202023 

69 individuals 
119 eyes 

modified Airlie 
House classification 
system used in 
ETDRS24,25 and 
ICDR18 

ĸ= 0.45 ± 0.33. 

- 

Per patient/eye 
RDR 87.0% (74.5-94.2) / 
77.8% (67.3-85.7) 

Per patient/eye  
RDR 78.6% (44.8-94.3) / 
71.5% (48.7-86.9) - - 

Sosale, et al. 
2020b26 

922 patients ICDR, DME18 ĸ= 0.79 - 0.91 ĸ= 0.8 Any DR 83.3% (80.9-85.7) 
RDR 93% (91.3-94.7) 
STDR 95.2% 

Any DR 95.5% (94.1-96.8) 
RDR 92.5% (90.8-94.2) 

Any DR 87.8% 
RDR 78.2% 

Any DR 
93.6% 
RDR 97.8% 

Jain, et al. 
202112 

1378 individuals ICDR18 
 

ĸ= 0.89 

- 

Per Patient/Eye 
Any DR 89.1% (82.7-
93.7)/88.6% (83.5‑92.5) 
RDR 100% (94.7‑100.0) 
/100% (96.6-100.00  

Per Patient/Eye 
Any DR 94.4% (91.8-
94.7)/94.8% (93.8‑95.6) 
RDR 89.5% 
(87.7‑91.1)/91.8% 
(90.7‑92.9) 

- - 

Malerbi, et 
al. 202227 

824 individuals 
3255 images 

ICDR18 
- . 

mtmDR 97.8% (96.7-98.9) 
 

mtmDR 61.4% (57.7-65.1) mtmDR 
48.5% 

mtmDR 
98.7% 

Wroblewski, 
et al. 202317  

248 patients 
2130 images 

Any grade DR by a 
retinologist  - - 

Any DR 
Medios 94% (88-97) 
EyeArt 94% (86-98) 

Any DR 
Medios 94% (88-98) 
EyeArt 86% (77-93) 

Any DR 
Medios 95% 
EyeArt 89%  

Any DR 
Medios 93% 
EyeArt 93% 
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Table 3 Summary of selected studies showing study settings, methods, study samples, tools, and images used in DR screening. AI: Artificial Intelligence. 

Author Country Screener AI Software Used Smartphone Used 
Pupil 

DIlation 
Fundus Images 

Sengupta, et al. 
201814  

India Not specified Medios AI28  HTC One with Remidio FOP (Fundus 
on Phone)29 

Yes 45° Field of View (FOV) 
3 fields (posterior pole [macula-centered], 
nasal field, and superotemporal field) 

Rajalakshmi, et 
al. 201821 

India Not specified EyeArtTM (v2.1.0)30 Not specified  Yes 45° FOV 
4 fields (macula centred, disc centred, 
superior-temporal and inferior-temporal) 

Natarajan, et al. 
201913 

India Health worker Medios AI28  Not specified Yes Anterior segment 
3 fields (posterior pole [including disc and 
macula], nasal and temporal field) 

Sosale, et al. 
202022 

India Trained technician14  Medios AI28  Iphone 6 Remidio Non Mydriatic 
(NM) FOP29  

No 3 fields (posterior pole [macula centred], nasal 
and supero-temporal field) 

Tyson, et al. 
202023 

USA Medical student and 
medical intern 

EyeArt® (v2.0) 
system30 

Iphone with Retinascape31  Yes 5 sequential images (central, inferior, superior, 
nasal, and temporal) 

Sosale, et al. 
202026 

India Trained technician14  Medios AI28  Iphone 6 with Remidio NM FOP29 No 2 images, disc and macula centred 

Jain, et al. 
202112 (2) 

India Healthcare workers Medios AI28  Smartphone with Remidio NM FOP29 No 3 fields (posterior pole, nasal and temporal 
fields) 

Malerbi, et al. 
202227 

Brazil 9 examiners including 
med students 

PhelcomNet,  
Modified Xception32  

Smartphone with Eyer, Phelcom 
Technologies33 

Yes 45° FOV, 2 images of posterior pole (macula 
and disc centred) 

Wroblewski, et 
al. 202317  

Mexico 3 graduate students Medios AI,28 EyeArtTM 
(v2.1.0)30 

Smartphone with Remidio FOP29 Yes 3 fundus fields (posterior pole [disc and 
macula], nasal, temporal) 
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DISCUSSION 

In this review, we reported the sensitivity, 

specificity, predictive values, 

intergrader/intermodality agreement and compared 

the different study settings from nine studies. These 

studies showed from good sensitivity of 67.3 - 100% 

and specificity ranged from 61.4 - 95.5%. There is a 

wide range of PPV with 48.1 - 92.92%, but display 

astounding NPV range of 91.3 - 99.46%. This 

founding suggests that even though using 

smartphone-based screening integrated with AI for 

DR might need some work to increase the detection 

rate, it already shows promising results in 

differentiating those with no disease. The U.S. Food 

and Drug Administration (FDA) requires superiority 

cut-offs for AI algorithms used in DR screening to 

demonstrate a minimum sensitivity of 85% and 

specificity of 82.5%.34 Most studies reviewed shown 

that AI algorithms can meet or exceed these 

accuracy requirements.  

Within the study of Rajalakshmi et al. (2018),21 the 

EyeArt software demonstrated a high sensitivity 

exceeding 95% for detecting DR, STDR, and RDR in 

retinal images captured using the FOP smartphone 

device. The accuracy achieved in this study is 

comparable to that of the Google AI algorithm, 

which demonstrated high sensitivity and specificity 

for detecting RDR in both the EYEPACS-1 (97.5% 

sensitivity, 93.4% specificity) and Messidor-2 (96.1% 

sensitivity, 93.9% specificity) datasets.35  

Lower specificity is found in study of Rajalakshmi 

et al. 2018 in detecting RDR (68.8%) because AI 

algorithm tends to overestimate the presence of 

moderate NPDR in retinal images. This misdiagnosis 

frequently occurs because the AI system mistakenly 

identifies certain retinal features not associated with 

DR, such as drusen, RPE atrophy, RPE hypertrophy, 

telangiectatic vessels, and retinal vein occlusion, as 

indicators of DR.21 Specificity of not mtmDR in 

Malerbi et al. (2022) is also somewhat lower 

(61.4%)27 than previous report,34,36 and from further 

examination of the false positives showed that the 

algorithm often mistook normal variations in fundus 

pigmentation or image imperfections for signs of 

disease.27 

In a study by Jain et al. (2021), the AI system 

demonstrated 100% sensitivity for detecting RDR, 

but only 89.55% specificity. This resulted from 136 

false positives (10.5%), including 55 misdiagnoses of 

mild NPDR and other non-DR conditions such as 

glaucoma, retinitis pigmentosa, age‑related macular 

degeneration, gliosis, macular scars and asteroid 

hyalosis. This high false-positive rate (and the low 

PPV of 33.33%) might be attributed to the 

combination of the AI's extreme sensitivity and 

potential image quality issues due to less-

experienced operators. While a high rate of false 

positives may result in more patients being referred 

to specialists and potentially cause them 

unnecessary anxiety, it can also be beneficial by 

identifying other eye conditions other than DR that 

require medical attention.12 

Overall, the intergrader agreement (quadratic 

weighted kappa) reported in selected studies is 

moderate to high (ĸ= 0.45-0.91). Sengupta, et al. 

2018 compared photographic modality (Remidio 

FOP vs. Topcon desktop fundus camera) and found 

intergrader agreement using Remidio FOP is 

moderate in detecting any DR (ĸ= 0.55; CI = 0.50 - 

0.57), not too far off from using Topcon (ĸ= 0.68; CI 

= 0.67 -0.73). Both imaging methods showed 

substantial agreement in diagnosing VTDR with 

Remidio FOP (ĸ= 0.76; CI = 0.68 -0.85) and Topcon 

(ĸ= 0.81; CI = 0.73 -0.89). However, the slightly 

higher agreement for Topcon may be partially 

attributed to the misclassification of three cases of 

PDR as no DR (R0) by one grader using the Remidio 

FOP. This error occurred despite adequate image 

quality, likely because the characteristic 

neovascularization of PDR was not captured within 

the limited field of view of the images.14
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In this review, the Medios AI software was 

primarily used for retinal image analysis, working 

seamlessly with both the Remidio FOP and Remidio 

NM-FOP applications installed on the smartphone 

used for capturing retinal images. By utilizing the 

smartphone's powerful CoreML and OpenGL 

capabilities, image processing occurred directly on 

the device's graphics processing unit (GPU), 

eliminating the need for an internet connection to a 

server. The AI algorithm was run offline by the 

technician on the smartphone itself after image 

capture. The technician was trained to retake images 

if the AI indicated poor quality. The AI initially 

assessed image quality, then provided a binary 

output such as DR present or No DR.17 Furthermore, 

AL software  enhances the captured images with 

visual map highlighting potential lesions on the 

retinal images, assisting healthcare providers in their 

assessments and educating patients about potential 

issues of their eyes.13 Even though Remidio FOP only 

utilized 4 FOV compared to previous study with 7 

FOV using Digital Fundus Camera (Zeiss FF450 

Plus)37, it produced high sensitivity of 92.7% (87.8–

96.1) in grading Any DR, 87.9% (83.2–92.9) for stDR 

with high specificity of 98.4% (94.3–99.8) for any DR 

and 94.9% (89.7–98.2) for stDR.  

EyeArt's high accuracy was also reflected in the 

UK's National DESP program, where it screened 

30,000 patients across three regions. EyeArt showed 

a 95.7% (94.8 - 96.5%) sensitivity with 95% CI for 

detecting sight-threatening retinopathy, though its 

specificity was lower of 68% (67-69%) for no 

retinopathy, and 54.0% (53.4-54.5%) when 

combined with non-referable retinopathy. However, 

combined with its high sensitivity, EyeArt still 

provided significant cost savings for the NHS.3 The 

large number of people screened also marked the 

reproducibility of EyeArt in greater population. 

While the results are promising, it is worth noting 

that these studies were carried out under ideal 

conditions where experienced professionals used 

desktop fundus cameras and had stable internet 

access. This may not be feasible in countries with 

limited resources, particularly in outreach settings 

where access to trained personnel, reliable internet, 

and expensive equipment may be limited.12,21,26  

Tyson, et al. 202023 used smartphone with 

Retinascape31 conjugated with EyeArt® (v2.0) 

system30 has relatively lower score of intergrader 

agreement in detecting any DR (ĸ= 0.45 ± 0.33) 

compared to study by Rajalakshmi, et al. 201821 that 

used the same AI software (ĸ= 0.78; 0.7 - 0.86). The 

lower specificity reported by Tyson, et al. 202023 for 

detecting RDR of 78.6% (44.8 - 94.3%) per patient 

and 71.5% (48.7 - 86.9%) per eye is because the 

grading is based on gold-standard dilated 

examination by a retina specialist. Another reason is 

because EyeArt AI system was trained from a dataset 

of conventional retinal pictures, which may limit its 

ability to identify certain pathologies in smartphone 

images. Incorporating smartphone images into the 

training data could improve the algorithm's 

performance.  Tyson, et al. 202023 emphasizes that 

studies that validate new screening modalities by 

comparing clinician grading of mobile device 

images to traditional images may have erroneously 

high sensitivity due to the assumption that both 

methods are equivalent while recent research has 

shown that there is a notable difference between the 

two methods.38–40 Tyson also states that it is critical 

for researchers to rely dilated examination as the 

gold standard to make clinical diagnosis when 

validating the sensitivity and specificity of new 

diagnostic tools, particularly when using them in 

combination. 

Rajalakshmi, et al. 201821  stated that retinal 

photography, evaluated and interpreted by eye 

doctors specializing in the retina or other trained 

professionals, is a widely acknowledged and 

established method for diabetic retinopathy 

screening.37,41,42 However, there is shortage of 

trained professionals to evaluate retinal images in 

countries like India. If even available, busy schedules 
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have resulted in delays in providing DR grading and 

recommendations. These delays can result in 

miscommunication, loss of follow-up, and ultimately 

hinder the timely management of sight-threatening 

DR.43 That is along the current trend of tele-

ophthalmology and telemedicine,44 use of AI 

software to evaluate retinal images for automated 

DR grading as it has potential to reduce the 

workload and costs for healthcare providers in 

screening the increasing number of individuals with 

diabetes,45 resulting only those who have stDR and 

RDR would require appointment with the 

ophthalmologist or retina specialist. 

Along the trend of using artificial intelligence 

(AI)35 that accurately detect and grade DR in digital 

fundus images13,21,34,46 combined with the feasibility 

of DR detection using smartphone-based fundus 

photography, Wroblewski, et al. 202317 from Mexico 

made a noninterventional, retrospective analysis to 

compare the diagnostic accuracy of the offline 

Medios AI software and online EyeArt AI software in 

detecting DR. The analysis used a single set of 

patient images taken with the Remidio-FOP camera 

in a field setting. Medios AI have a sensitivity of 94% 

and specificity of 94% for detecting any DR when 

including poor quality images, and 99% and 88% 

when excluding poor quality images, respectively. 

These results are comparable with previous study 

from India.13,14 For EyeArt AI analysis, the sensitivities 

and specificities are 94% and 86% with all gradable 

images and 95% and 88% after excluding poor 

quality images. These results are similar to. those 

from previous studies detecting for any DR and stDR 

conducted in India,21 English,3 and America.23 

Surprisingly, the two AIs achieved similar levels of 

sensitivity and specificity, despite being trained 

using different methods. 15,47  International DR data 

set where Medios were trained from patients from 

Indian lineage22,26,46  while American and Northern 

Mexican lineage were used for EyeArt.15,48 It is 

imperative to note that from the same image sets 

using Remidio FOP, Medios AI was able to evaluate 

all 248 patients despite having poor quality images, 

whereas EyeArt is lower with 63% (156/248) of 

patients. One of the reasons for the high ungradable 

rate by EyeArt is that the camera operators were not 

trained and unfamiliar with the specific image and 

patient criteria required by EyeArt.21  

In 2022, Malerbi et al. made a study that used the 

Eyer camera from Phelcom Technologies to capture 

fundus images. These images were then analyzed 

remotely using the EyerCloud platform with a deep 

learning-enhanced method called PhelcomNet. This 

method assigned a prediction score (x) between 0 

and 1, indicating the likelihood of diabetic 

retinopathy (DR). Notably, the device grouped "no 

DR" and "mild DR" together, while all other DR 

severities were considered "more than mild DR" in 

comparison to the reference standard.27,33 Despite 

having high sensitivity of 97.8% and NPV 98.7% for 

mtmDR, it produced lower specificity of 61.4% and 

PPV of 48.5%. The team for obtaining images consist 

of a mix of trained professionals and inexperienced 

volunteers, captured images from over 900 

individuals in six hours. Since image quality from 

portable devices depends heavily on the operator 

skill,49 this combination of factors may have affected 

the quality of the images obtained in the study.27 

The ease of use and portability of smartphone-

based retinal cameras have been demonstrated by 

the successful acquisition of gradable images by a 

variety of operators, including healthcare workers 
12,13 trained technicians,14,22,26 medical interns and 

students,17,23,27 with minimal to no experience in 

ophthalmic examination with reliable result of 

sensitivity and specificity. This highlights the 

accessibility and user-friendliness of smartphone-

based retinal imaging compared to traditional 

tabletop fundus cameras, which are expensive and 

require specialized training.50  

Dilated fundus examination by an 

ophthalmologist, the main screening method for DR 

screening, time‑consuming as the patients need to 
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wait till their pupil is dilated, and accessibility to 

pharmacologic agents and ophthalmologist are not 

readily available. The gold standard method defined 

by the ETDRS group to screen photographically for 

DR is by stereoscopic color fundus photographs in 

seven standard fields, and this presents challenges 

in terms of time, accessibility, and cost. It requires a 

skilled photographer and special costly equipment, 

and is also time‑consuming to the patient, limiting 

expanded use, especially in resource-constrained 

settings.51,52 

While most study use pupil dilation for part of the 

screening process, Sosale et al (2020)22,26 and Jain et 

al (2021)12 opted for non-dilated using Remidio NM 

FOP. The sensitivity and specificity using Remidio 

NM FOP is considerably high, even exceeding 

mandated superiority cut-offs by FDA. These results 

are comparable with a study of Alfejri (2020)52 that 

compare non mydriatic fundus camera with optical 

coherence tomography (OCT) in screening for DR. 

This study shows 75.2% (69.3‑80.5) sensitivity, 96.0% 

(94.8‑96.9) specificity, 75.8% (69.9‑81.1) of PPV and 

95.8% (94.7‑96.8) NPV from a total 2406 patients in 

Riyadh, Saudi Arabia. This confirmed that using non 

mydriatic DR screening, both from smartphone or 

fundus camera can produce high sensitivity and 

specificity, allowing for more time-effective 

screening process and eliminating pharmacologic 

availability barrier in performing examination.  

Indonesia, the country where the author came 

from, is the world's largest archipelagic country with 

a population of over 280 million, making it the 

fourth most populous country in the world.53 A 

population-based study in Indonesia revealed that 

43.1% of adults with type 2 diabetes in both urban 

and rural areas had DR, with 26.3% having the more 

severe VTDR.45 However, Indonesian healthcare 

services still heavily focus on curative efforts rather 

than promotive and preventive services,54 resulting 

limited study to focus on preventive strategy, such 

as DR screening.  

In 2023, Lestari and colleagues conducted a study 

to evaluate the knowledge, attitudes, and practices 

of general practitioners (GP) in Jakarta regarding the 

screening of diabetic retinopathy in primary care 

settings and revealed a discrepancy between GPs' 

theoretical understanding and positive attitudes 

towards DR screening and their actual 

implementation of the practice, which was found to 

be poor. Most GPs referred patients for ophthalmic 

without attempting it themselves, believing DR 

screening was not their responsibility. Limited 

experience, lack of confidence in diagnosing fundus 

abnormalities, and lack of equipment in primary care 

also hinder GPs from conducting DR screening.8 The 

author hoped with emergence of AI-integrated 

screening process combined with the convenience 

of smartphone to capture retinal images will expand 

healthcare coverage, particularly for preventive 

services. 

The strength of this study is that we used 

comprehensive search methodology that was 

specified beforehand in our study’s design and gave 

comparative details about different settings and 

methods used in selected studies that provide 

options if it were to be applied to a health care 

system. However, limitations are noted such as 

difference reference methods, difference definition 

of DR grading such as RDR, vtDR, and mtmDR. 

Secondly, we did not specify whether the AI software 

used in smartphone retinal imaging was compared 

to actual retinal examination by ophthalmologist or 

assessing the digital retinal image obtained from 

tabletop fundus camera. However, in DR screening, 

it is important use a system that can be 

implemented existing workflow especially in primary 

healthcare settings that facilitated expanded 

screening and early referral for increasing 

population of underserved diabetic patients to get 

intervention.55  
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CONCLUSION 

The studies reviewed in this paper collectively 

represents the potential of smartphone-based 

integrated with AI in revolutionizing DR screening. 

The high sensitivity and specificity achieved by 

various AI algorithms, often exceeding the standards 

set by regulatory bodies like the FDA and ETDRS, 

highlight their accuracy in detecting DR and its 

severity levels. The accessibility and user-friendliness 

of smartphone-based retinal imaging further 

enhance DR screening coverage, particularly in 

underserved areas with limited resources and 

internet connectivity.  
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